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SUMMARY

The numerical performance of a second-order upwind-based TVD scheme and that

of a uniform second-order ENO scheme for shock capturing are compared. The TVD

scheme used in this study is a modified version of Liou, using the flux-difference splitting

(FDS) of Roe and his "superbee" function as the limiter. The construction of the basic

ENO scheme is based on Harten, Engquist, Osher, and Chakravarthy, and the 2D

extensions are obtained by using a Strang-type of fractional-step time-splitting method.

Numerical results presented include both steady and unsteady, 1D and 2D calculations.

All the chosen test problems have exact solutions so that numerical performance can

be measured by comparing the computed results to them. For 1D calculations, the

standard shock-tube problems of Sod and Lax are chosen. A very strong shock-tube

problem, with the initial density ratio of 400 to 1 and pressure ratio of 500 to 1, is also

used to study the behavior of the two schemes. For 2D calculations, the shock wave

reflection problems are adopted for testing. The cases presented in this report include

flows with Mach numbers of 2.9, 5.0, and 10.0.

*Work thnded under Space Acl Agreement C99066G.



INTRODUCTION

For hyperbolic systems of conservation laws, conventional shock capturing schemes

are known to yield oscillatory solutions near discontinuities. The requirement of mono-

tonicity has led to the notion of the total variation diminishing 1 (TVD) property that

provides a mathematical basis for the subsequent development of many TVD schemes.

One large class of TVD schemes uses flux limiters to control the amount of anti-diffusive

flux 1-_. The limiter can be designed so that a conventional non-TVD scheme may be

modified to satisfy the TVD condition 1. Formal extensions of these ideas have also

been made to a variety of problems in multidimensions s,9.

Although "high-order" TVD schemes generally show oscillation-free and crisp

shock profiles, they degenerate to first-order accuracy at extremum points of the so-

lution. Also, it was shown that TVD schemes are at most first-order accurate in

multidimensions 1°. Partly aimed at removing the local restrictions of the TVD schemes,

Harten, Engquist, Osher, and Chakravarthy recently developed the uniformly accurate

essentially non-oscillatory (ENO) scheme 11'12. Instead of restricting the total variation

from increasing as in TVD, the ENO scheme permits the variation to possibly increase,

but only by an amount on the level of local truncation errors.

The basic ENO-theory contains many desirable properties. The essential feature

that distinguishes the ENO construction from other shock capturing schemes is the use

of piecewise polynomials to obtain an essentially non-oscillatory reconstruction of the

solution from its cell averages. Because the ENO scheme is relatively new, its numerical

performance has yet to be fully explored. A numerical comparison of the ENO and

the TVD schemes based on Chakravarthy and Osher 13 is contained in Chakravarthy

et a114, where the numerical experiment was done on a linear scalar equation showing

the superiority of the ENO over TVD, which clips at the local extremum of the smooth

solution. Although clearly the ENO scheme is applicable to the approximation of any

solution, smooth or discontinuous, it seems that the main purpose of its development

is still to capture shocks. One would like to study further the behavior of the ENO as

a shock capturing scheme. One of the major tasks is to investigate whether this new

approach can be extended to produce higher-order multidimensional shock capturing
schemes.

In practical applications a uniform second-order scheme is very desirable. In this

report, we investigate the numerical performance of a second-order upwind-based TVD

scheme and that of a uniform second-order ENO scheme for shock capturing. We

understand that not all TVD schemes perform equally well due to the differences in

construction. The TVD scheme used in this study is a modified version of Liou 7, using

Roe's flux-difference splitting (FDS) 15 and his "superbee" function s as the limiter.

The construction of the basic ENO scheme is based on Harten et a111 and the 2D

extensions presented here are obtained by using a Strang-type of fractional-step time-

splitting method 16 Results presented in the following sections include both steady

and unsteady, 1D and 2D calculations. For 1D calculations, we use the standard

shock-tube test problems of Sod and Lax. A very strong shock-tube problem, with the

initial density ratio of 400 to 1 and pressure ratio of 500 to 1, is also used to study the



behavior of the two schemes. For 2D calculations, we adopt the shock wave reflection

problems for testing so that numerical results can be compared with the exact solutions.

The cases presented here include flows with Mach numbers of 2.9, 5.0, and 10.0.

CONSTRUCTION OF THE SCHEMES

In this section we describe briefly the construction of both schemes.

ENO Scheme:

Rather than repeating Ref.11, we describe in the following a step-by-step algorithm

for implementing a uniform second-order ENO scheme using the reconstruction via

deconvolution (RD).

For a single conservation law of the form

ut -4- f(u)z = 0, t > 0,

u(x,0) = u0(x),

(1)
(2)

the integration of (1) over [xi_ _,xi+_l×lt.,t,_+l] leads to

zxt - , (3)= _

where

^ 1 fo Atfi+_ - At f(u(xi+ ],tn + #))d#, (4)

and -nui denotes the cell-average of u over [xi_ ½, xi+]] at tn. In this formulation, one

sees that the function u in the integral in (4) has to be reconstructed from the cell-

averages {_n}. The ENO scheme uses piecewise polynomials to obtain an essentially

non-oscillatory reconstruction u(x, t,_), and then uses a local Taylor expansion to obtain

u(x,t) over [t,_,t,_+l].

At t,_, assume that we have obtained {v_'} approximating {K_}. The {v_} comes

from the numerical scheme

At --

tt n+l = I)_ -_-_(fi+_ -- ]i--_)' (5)

where

-]i+] - At f(v(xi+]'tn + la))d#" (6)

In order to compute ?i+! in (6), we first reconstruct v from {v?}. For a second-order

scheme, the reconstructe_l v at t,_ takes the form

v(x,t,_) = v'_ + si(x - xi), over each [xi_ _,xi+_], (7)



where the slope si is chosen in the following way.

For each [xi,xi+l}, if

set

else set

d 1 ,_,(x_ + 0) - 2h_ (_+' - "L,),
1 n

_xv(Xi+l -0) -- 2_x(3Vi+' -4v_ + v__1);

1

2Ax (-vh2 + 4v_+, - 3v_),

d 1

_(_,+,-o)- (vT+_- v_)2Ax

where_(_, + 0) and_,(_,- 0)denoteone-sidedderivativesat _, fromthe right
and the left respectively. Then

where M denotes the minmod function

_ m;'_(Ipl, M), if Sgn(p) = Sgn(q) = a;
M(p, q) = (. 0, otherwise.

The above algebraic procedure for the reconstruction of v is illustrated in Fig. 1.

In the picture shown, we have Iv_+l - 2v_ + v__ll < lv_+2 - 2v_+ 1 + v_l. Then we

construct a quadratic polynomial passing through vl-1, vi, and vi+l. The slopes of the

two one-sided tangents to this polynomial at xi and xi+l are denoted by _v(xi + O)

and dv(xi+x --0) respectively. Hence, doing this construction over every [xi,xi+l], we

will get two one-sided slopes at every point vi. The minmod function M is then used

to select the final slope.

Next, we construct the local Taylor expansion _(x, t) over[ '-2x _,x.llx,.2. [t'_'tr'+x]
using the original PDE (1) and fi_(x,t,,) = v(x,t,_) as the initial values. For a second-

order scheme, we truncate the second and higher-order terms in the Taylor expansion.

Now, it is also sufficient for a second-order scheme to approximate the integral in

(6) by using the trapezoidal rule. We obtain

- 1

f{+_ = _[f(v(z,+_,t,_)) + f(v(x,+_,t,_+1))]. (9)

Here in (9) each f(v(xi+ _ ,t)) is then approximated by

f_ (_,(_;+_, t),_+,(_,+_,t)),
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where fR(1)L, I)R) : f(V(0; t)L, ttR) ) and V(x/t; VL, VR) denotes the self-similar solution

to the Riemann problem

vt + f(v), = O, t > O,

(, VL, z < O,
I)(x, O)

VR, X >0.

Note that a Riemann solver can be adopted here to obtain the values fR.

Hence, combining the above we have

v7+1 ,, At -= vi S-;_(fi+_ - 7i-_), (10)

where

with

- 1

f i+_ = _[fn(fii(zi+_,t,),fii+1(zi+_,t,_))

+ fn(fii(zi+_,t,+,),fii+l(Zi+i,tn+l))],

_(._+_,t_)= v_+ -_-_,
Ax

A:r

Az

r,,+l(_,+_,t_+,) = "5_ - y_,+l - AtI'(,,_.÷l)_,+x,

(11)

and the si's come from (8). This scheme is uniformly second-order accurate in the

pointwise sense.

For a nonlinear system of conservation laws of the form

ut + f(u), = 0, t > 0, (12)

u(x,O) = uoCx), (13)

where u(z,t) = (Ul(X,t),...,Um(X,t)) 7' and f = (fl,...,fm) T, we describe briefly the

procedure using the characteristic reconstruction 11. Let ai(u), i=l,...,m, denote the

eigenvalues of the Jacobian matrix

A(u) Of

so that al(u) < ... < am(U). Let rl(u),...,rm(u) be the corresponding linearly in-

dependent right-eigenvectors. Also, let l_(u),...,l_(u) denote the left-eigenvectors Of

A(u) so that l_(u)rk(u) = g,k. The k th characteristic variable is defined to be

w k = lku, k = 1,...,m.
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Now, suppose we know the approximations {v_} to the cell-averages (_(zi, tn)),

where u(xi,tn) -- (Ul(Xi, t_),...,Um(Xi, tn)) T. For each fixed i and a fixed k, we use

the following values

Ik(Un 1, ...,tk 2

and the procedure described in (7), (8) to reconstruct w k over [xi__,xi+_] at t,_. Let

Wk(X, tn) denote this reconstructed polynomial over [xi__,xi+_]. Then the vector-
valued characteristic reconstruction v(x,t,_) will be of the _orm

m

v(x, tn) = Z Wk(X'tn)rk(v_)' over [xi__,xi+_].
k=l

Then we construct the local Taylor expansion vd (x, t) over [xd_ ½, xi+ ½ ]× [tn, tn+ x] using

the original PDE (12) and fid(x,t,_) = v(z, tn) as the initial values.

The resulting scheme for the system (12) will take the same form as (10) and

(11), interpreted as vector equations. The values for fR are similarly obtained from a

Riemann solver. For the Euler equations, one can use either an approximate Riemann

solver (e.g. the one developed by Roe 15) or an exact Riemann solver. The results

presented here are obtained by using an exact Riemann solver outlined in Chorin 17.

For 2D computations, we present the results obtained by using the Strang-type

of fractional-step time-splitting method 16. The final 2D scheme is formally of second-

order. Since this method has been well-documented in the literature (see, e.g., Ref.

8,17), we omit the details.

Upwind-Based TVD Scheme:

The construction of the upwind-based TVD schemes consists of basically the fol-

lowing steps:

(1) Decomposition by upwinding: The conventional representation of spatial flux

derivatives, such as second- or higher-order, central or upwind difference, is de-

composed into parts consisting of a first-order upwind flux difference and the re-

maining higher-order flux differences, called anti-diffusive terms. For example, one

can choose the following second-order central difference formula

1

f(u)::- 2A:r (fi+l- A-l)

and decompose it into a first-order upwinding term plus an anti-diffusive term as

follows

-x 1 f+fx -- (A+f - + A-f +) + 2_xA-( A+ - A+f-),

where A + and A- denote the forward and backward differences, f+ and f- denote

the positive and negative fluxes.

(2) Recombination by limiters: Introduce flux-difference limiters, _b+ and _b-, to the

anti-diffusive terms,

1
fz- 1 (A+f-+A-f+)+_XA-(_P+A+f+-dP-A+f-).

t
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(3) Time evolution by TVD: Choosea time integration scheme,e.g., the Lax-Wendroff
or the two-stage Runge-Kutta schemeas usedin the present study, and determine
the functional form of limiters for satisfying the TVD condition 1. The results
presentedhere are obtained by using Roe's "superbee" function 5 as the limiters.

Hence the critical ingredients are the upwinding and the choice of limiters. In the scalar

case, there are no essential variations in defining the argument of the iimiter function

among TVD schemes; the variations are wider in the case of systems of equations.

In Ref.7, the upwinding procedure is achieved by the flux-vector splittings (FVS)

of Steger and Warming is, and van Leer 19. Since the construction of the present TVD

scheme is done in terms of flux differences representing the spatial derivatives, as shown

above, the flux-difference splittings (FDS) of Roe ts and Osher 2° become a natural

vehicle for upwinding. In fact, replacing the subroutine evaluating the FVS by that for

FDS was the only change needed in the code.

The procedure developed for the scalar hyperbolic equation is generalized to the

one-dimensional system of conservation laws, which can be decoupled into scalar equa-

tions for each of the characteristic variables in the constant coefficient case. For more

details on the TVD construction and various forms of the iimiter functions for the sys-

tem, see Ref.7. A formal extension to multidimensional equations is made by treating

the flux derivative in each direction individually, following the spirit of the directional

splitting as stated earlier in the construction of the ENO scheme. This treatment, while

straightforward in implementation, will result in a wider smearing at a discontinuity in

multidimension.

NUMERICAL TESTS AND COMPARISON

We have chosen test problems with known exact solutions to make meaningful

comparisons. For 1D calculations, we show the numerical results for three unsteady

shock tube problems with shock strengths ranging from moderate to very strong. Here

1D Euler equations are solved in both schemes. TVD calculations are carried out using

the flux-difference splitting (FDS) is and the "superbee" function s as the limiter. In

Fig. 2, 3, and 4, we show both the computed and the exact solutions after certain

time steps. For comparison in each figure, the TVD results are shown in the (a)-sets

of figures and the ENO results in the (b)-sets. The initial conditions are also plotted

and they are given as follows.

Fig.2. Sod's Problem:

(1,o, 1),(p,u,p) : (0.125,0,0.1), x >5.

Fig.3. Lax's Problem:

(0.445, 0.698,3.528), x < 5(p,u,p) : (0.5,0,0.571), x > 5.



Fig.4. Strong ShockProblem:

(400,0,500), s < 5(p,u,p) = (1,0,1), s > 5.

For the Sod problem, we take As = 0.1, At = 0.03, and compare the results after 60

time-steps. Similarly, for the Lax problem, we take As = 0.1, At = 0.017, and 85

time-steps; and for the strong shock problem As = 0.05, At = 0.01, and 90 time-steps.

For 1D computations, the Sod and Lax problems involve only moderate strength

shocks. Here both the TVD and ENO schemes show very good results. However,

in comparison with the exact solutions, the TVD results appear to be slightly less

dissipative than the ENO in describing both the shock and contact discontinuities,

but less accurate in the head of the expansion fan. The shock strength in the third

test problem is considerably higher than the first two cases, thereby presenting a more

severe test on the schemes. Here, the ENO results seem to be better than the TVD

results, although both schemes badly diffuse the contact discontinuity. In Fig.4, the

severe rounding of energy-distributions is probably caused by the starting errors in the

Riemann problem. In Fig.4(a), the "kink" in the velocity-distribution is caused by the

flux-differencing in the scheme we used, but can be removed by adding a smoothing

term. TVD schemes based on initial-value reconstruction such as van Leer's MUSCL,

in general, do not have this phenomenon.

For multidimensional computations, in general, the shock capturing numerical

schemes are formal extensions of the corresponding 1D schemes. In our case, both the

TVD and ENO schemes are formally extended to 2D problems. We test the extended

schemes on problems involving a regular reflection of an oblique shock wave from a

plane wall. ttere the 2D Euler equations are solved, with incoming Mach numbers

ranging from 2.9 to 10.0 and a shock angle of 29 degrees. The physical situation is

shown in Fig. 5. The TVD scheme is formally applied directly to the steady Euler

equations, while the ENO scheme is formally applied via the Strang-type fractional

steps to the unsteady Euler equations until steady solutions are reached. The inflow

and the interior initial conditions are fully specified with free stream values, and the

conditions at the top boundary are set to satisfy the shock-jump relations with a

specified shock angle. The variables at the outflow boundary are extrapolated. At the

solid wall, the vertical velocity component and the gradient of the other variables are set

to zero. The computational domains contain equally divided meshes with As = 0.067

and Ay = 0.05. For the test cases with Mach numbers of 2.9, 5.0, and 10.0, the

computational domains contain respectively 61x21, 74x21, and 83x21 points.

In the ENO computations, the case with Mach number 2.9 is straightforward. In

the cases with Mach numbers 5.0 and 10.0, we have to degrade the scheme to the

first-order Godunov scheme near very strong shocks. The reason for doing this is that

the application of the same algorithm used in the Mach 2.9 case does not produce

steady solutions for the higher Mach number cases. What happened was that, after

the shocks were correctly captured, the computed solution would continue to change

and convergence could not be reached. Our experiments indicate that the difficulty

occurs when the Mach number reaches 4.0. We understand that in Glaz, Colella, Glass
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and Deschambault 21 on a different numerical experiment, a similar reduction of order

was made to their second-order Godunov scheme in the immediate vicinity of a strong
shock.

In our 2D computations, although the results from both extended schemes are quite

acceptable, they are not as crisp as those 1D results. In Fig. 6, we show the pressure

contours of the Mach 2.9 ENO computation. A similar picture is obtained from the

TVD computation. Since it is impossible to compare the accuracy of the results using

these contour pictures, we look at the pressure distributions at the cross sections at

y = 0 and y-- 0.5. In Fig. 7, 8, and 9, we show both the computed and the exact

steady solutions for the cases with Mach numbers of 2.9, 5.0, and 10.0 respectively.

In comparison with the exact solution in the Mach 2.9 case, both the TVD and ENO

results are quite good. ENO captures discontinuities using slightly fewer mesh points,

but TVD is slightly less oscillatory here. For the cases with Mach numbers 5.0 and

10.0, our extended ENO results are inferior to the corresponding TVD results. This

is due to the reduction to the first-order Godunov scheme near very strong shocks.

Further investigation is undertaken to improve the method of implementation.

ACKNOWLEDGMENTS

The authors would like to thank Bram van Leer for many helpful discussions and

suggestions.

REFERENCES

1. Harten, A., "High Resolution Schemes for Hyperbolic Conservation Laws," J.

Comp. Phys., 49(1983), pp.357-393.

2. Van Leer, B., "Towards the Ultimate Conservative Difference Scheme II. Mono-

tonicity and Conservation Combined in a Second-Order Scheme," J. Comp. Phys.,

14(1974), pp. 361-370.

3. Osher, S. and Chakravarthy, S., "High Resolution Schemes and The Entropy Con-

dition," SIAM J. Numer. Anal., 21(1984), pp. 955-984.

4. Sweby, P.K., "High Resolution Schemes Using Flux Limiters for Hyperbolic Con-

servation Laws," SIAM J. Numer. Anal., 21(1984), pp. 995-1011.

5. Roe, P.L., "Some Contributions to The Modelling of Discontinuous Flows," Lec-

tures in Appl. Math., 22(1985), Part II, pp. 163-193.

6. Yee, H.C., Warming, R.F., and Harten, A., "Implicit Total Variation Diminish-

ing(TVD) Schemes for Steady-State Calculations," J. Comp. Phys., 57(1985), pp.
327-360.

7. Liou, M.-S., "A Generalized Procedure for Constructing an Upwind-Based TVD

Scheme," AIAA Paper 87-0355.

8. Yee, H. C., "Upwind and Symmetric Shock-Capturing Schemes," NASA TM89464,

May 1987.

9



9. Yee,H.C., Klopfer, G.H., and Montagnd, J.-L., "High-Resolution Shock-Capturing
Schemesfor Inviscid and Viscous Hypersonic Flows," NASA TM100097, April
1988.

10. Goodman, J.B. and LeVeque, R.J., "On the Accuracy of Stable Schemes for 2D

Scalar Conservation Laws," Math. Comp., 45(1985), pp. 15-21.

11. Harten, A., Engquist, B., Osher, S., and Chakravarthy, S., "Uniformly High Order

Accurate Essentially Non-Oscillatory Schemes III," J. Comp. Phys., 71(1987), pp.
231-303.

12. Harten, A. and Osher, S., "Uniformly High-Order Accurate Nonoscillatory

Schemes I," SIAM J. Numer. Anal., 24(1987), pp. 279-309.

13. Chakravarthy, S.R. and Osher, S., "A New Class of High Accuracy TVD Schemes

for Hyperbolic Conservation Laws," AIAA Paper 85-0363.

14. Chakravarthy, S.R., Harten, A., and Osher, S., "Essentially Non-Oscillatory Shock-

Capturing Schemes of Arbitrarily-High Accuracy," AIAA Paper 86-0339.

15. Roe, P.L., "Approximate Riemann Solvers, Parameter Vectors, and Difference

Schemes," J. Comp. Phys., 43(1981), pp. 357-372.

16. Strang, G., "On the Construction and Comparison of Difference Schemes," SIAM

J. Numer. Anal., 5(1968), pp. 506-517.

17. Chorin, A.J., "Random Choice Solution of Hyperbolic Systems," J. Comp. Phys.,

22(1976), pp. 517-533.

18. Steger, J.L. and Warming, R.F., "Flux Vector Splitting of the Inviscid Gasdy-

namic Equations with Application to Finite Difference Methods," J. Comp. Phys.,

40(1981), pp. 263-293.

19. Van Leer, B., "Flux-Vector Splitting for the Euler Equations," Lecture Notes in

Phys., 170(1982), pp. 507-512.

20. Osher, S., "Numerical Solution of Singular Perturbation Problems and Hyperbolic

Systems of Conservation Laws," North-Holland Mathematical Studies, 47(1981),

pp. 179-205.

21. Glaz, H.M., Colella, P., Glass, I.I. and Deschambault, R.L., "A Numerical Study

of Oblique Shock-Wave Reflections with Experimental Comparisons," Proc. R.

Soc. Lond. A 398(1985), pp. 117-140.

10



I

I
I

I
./

J

I

I I I

___(_, + o) . . r

• \ X' / \

'.J S "q '',"7,
"-' _.-r-:7./- '" -r-v(x,+l-0] t

.f

J

\

\,

\

/.

i, 1 | i '

_i-- 1 Xl Xi+ 1 Xi+ 2

\

\

\

\

II

\

\

q \

I \_ _.

I

I

i

I

\

Fig. 1. Geometric ENO reconstruction

II



ORIGINAL PAGE IS

OF POOR QUALITY

L_

i

p,j--

m

I 1
2

I 1

EXACI

.COMP

6O STEPS

OX=O. lO

#OE SPLIT

I l I I __.__l
6 b I0

X

EXACT

• .COMP

60 STEPS

OX=O.I

l l I ,I J I I l l l
2 _ 6 G I0

X

c_
c_

I
0

I I I
2 '+

ii

fall

I l I I I I

6 X 8 tO

O

_m

d-

oa

oi

D

m

I I I I I l

6 X O

I
I0

(a) TVD (b)  ;NO

Fig. 2. Numerical solutions of Sod's problem

(1,o, 1), < s(p,u,p) .... (0.125,0,0.1), z > 5

12



m

c]

/
I 1

6 X

_ I

Od

t_

c]
I

6 X

I
IO

t_

m

I I I I
2

, L_

I 1 I I I

6 X 8 10

I I 1 I I
2

I 1 !

6 X 8

I I
I0

(a) TVD (b) ENO

Fig. 2. Numerical solutions of Sod's problem(continued)

13



CD

C)

c_

u_

_ r_

_._ °

LP j c_

.¢

L:j_

"0
C_

EXACT

.COMP

B5 SIEPS

OX=O./O

POE SPLII

I I 1 1 1 1 1

2 '+ 6 X

I I

P,, °

I

I 1 I 1 I

6 X 0 10

o

,,o

. o _

-_ °;

Lr_
c_j

c._ •
_ m

rx/

"0
o

1 t 1 I l 1 1

2 '_ 6 X

q.j
qr

b3
t_
q,
q.

_v

-(3

o-
i

_L

CD

Go
I I J 1 l l I
8 I0 2 '+

I 1 1 I 1 I
6 8 10

X

(a) TVD (b) ENO

Fig. 3. Numerical solutions of Lax's problem

(0.445, 0.698,3.528), x <:5(P'"'P) : (o.s,o,o.s71), • > s

14
ORIOINAL PAGE IS

OF POOR QUALITY



qD

L0

h.

g-

C

O

I 1 1 1
2 '_

1

6 X

I
B '.-L_O

Q--

0 I I ] I 1
I 1

6 X
I
B ]1o

I 1 I 1 1
2 '_

I 1 I

6X B

t_m

CD m

0

0
I 1 1 1 I

2

7
I I I

6 X 8

1 I
10

(a) TVD (b) ENO

Fig. 3. Numerical solutions of Lax's problem(continued)

15



o

o

o--

o 1 l I l
0 2 '_

c1)

• . COMP _"

90 S IEPS

OX=O. 05
DOE SPl 17

J 1 liO ° 0 I 1 1 1
6 X 8 2 '+ "

ExmcT

• .CONP

90 STEPS

Ox:o.05

'8 I t lo

o

t_

o

G--
_m

o

o--

o

0--

0

0
l l l l

0

;6X B ] I0 0 I2 I Io, 6X ;

i
,. I I
8 10

(a) TVD (b) ENO

Fig. 4. Numerical solutions of a strong shock problem

(4oo, o, soo), _ < s(P'"'P) : (1,o,1), • > s
16



c:b

J ! J
2

6 X B
c- D

I 1 1
2

6X B
I ii0

1
2

I I I I I I I
_. 6.. g I0

X

c_
t_

,{%1_

,0
1 I

) 2

1
I 1 1 I 1 I I I

'_ 6 8 10
X

(a) TVD
(b) ENO

Fig. 4. Numerical solutions of a strong shock problem(continued)

17



Y

M=2.9, 5, 10

v7 i i .f ," I ," i 1" I f I i f f • l , f ,_ • :,

-#-
1.0

_L

Fig. 5. Shock Reflection Problems

M=2.9, 5.0, 10.0;/3=23.28, 16.99, 1:3.89 degrees respectively

Fig. 6. Shock reflection problem, pressure contours from ENO computation

Mach number=2.9, shock angle=29 degrees

18



\

¢M

_m

]

,5-
o

o

, IR

o

X/L

Y:O.5

POE SPL I 7

©X = O. 067

o°o, EXACT

.... COMP

u3--

L_

C_ --

m--

o

o

1 l
l

0

o

o

l I I I !
2 3 4

x//_

Y=0.5

©x = 0.0_7

oo,, EXACI

.... COMP

U.

Ck _-
\

D

cr --

(',_--

%

'k._-I
o

o

o

o

o

I ] 1 ]
1 2

- I IIIp

X/L

U7

L_

\

Y= 0,0

ROE SPL I 7
c_

OX = O. 067

.... EXACT

.... CONP -_

J
9

o

o

o

o

m

l I I I I I
1 2 3

I

X/L

Y =0.0

DX = O. 06 ;

.... EXAC i

o . o . COHP

(a) TVI) (b) ENO

Fig. 7. Shock reflection problem, static pressure distribution at y=O and y:O.5,

Mach number:2.9, shock angle:29 degrees

19



o _

¢%J

.o

0

o

-- ,L.Z-.-...... I liiiii __ --

- 0

llmlml_ I I I I I I
I 2 3

X/L

Y =0.5

#OE SPL I T

OX -- O. 062

*o** EXACT

• = , • COHP

q
\

0

L

GO

,,0

0

o
o

o

o

o

o

- o

/. I
1 2 3

I I
,+

X/L

Y=0.5

Dx = O, 067

•**o EXACI

.... COHP

0
o)

\
_. -

_D

.,D

o

o

o

o

o

o

o

Y=O.O

,QOE SPL / T

DX ; O. 067

*..o EXACT

.... CONP

O

,...,

\,
CL

GO o
o

o

- o

.o o

I I _ I I I 1 I
R- 0 I 2 3

X/L
l

X/L

Y=O.O

Ox = 0.067

.... EXAC l

• o o , COIYP

(a) TVD (b)  .No

Fig. 8. Shock reflection problem, static pressure distribution at y=0 and y=0.5,

Mach number=5.0, shock angle=29 degrees

2O



ORIGtNAL PAGE fS

OF POOR QUALITy

0

,,0--

,4)

O'---

d'-

t_a

o

o

@
(9

Y=0.5

ROE 5PL I T

DX = O. 067

• oo, EX,4CI"

° o . . COMP

I I 1 I

X/L

E_

C_ c_

\-

.a3

on!

C)

t3

_ (_

(9

r--C.5

(3
DX _ O. 067

- (9 .... EXmCI

-- ' ..... " ..... " ",_, II .... COHP

I I I t, I

] 2 3 Lt 5 X/"6L

\--

,,D

O"

d"

,,0

e,a

(9

- (9

(9

(9

o

(3

(9

Y-- 0.0

#OE 5PL / f

OX = O. 067

,,,, EXACT

.... COMP

l -2 3 _. 5 6
X/L

.o

o'-

......... ,,,,,,,,,,I,,,,,,, ..........!

(9

CD

(D
-- 0

¢9

CD

o

- O

©

<D

(3

.... I [ l I I I I I I
] "'2 3 _ 5 6

X/L

Y=O.C

©X : O. 06 ;

.o.o EXACT

,,= o ° COHP

(a) TVD (b) ENO

Fig. 9. Shock reflection problem, static pressure distribution at y=0 and y=0.5,
Mach number=10.0, shock angle=29 degrees

21



Report Documentation Page
Nabonal Aeronaul(:s _r.}
Space AOrrl,rlpsffat_r/n

1. Report No. NASA TM-|0|355 2. Government Accession No. 3. Recipient's Catalog No.

ICOMP-88-18

4. Title and Subtitle

A Numerical Study of END and TVD Schemes for Shock Capturing

7. Author(s)

Shih-Hung Chang and Meng-Sing Liou

9 Performing Organization Name and Address

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

5. Report Date

September 1988

6. Performing Organization Code

8. Performing Organization Report No

E-4384

10. Work Unit No.

505-62-21

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15 Supplementary Notes

Shih-Hung Chang, Department of Mathematics, Cleveland State University, Cleveland, Ohio 44115 and Institute

for Computational Mechanics in Propulsion, NASA Lewis Research Center (work funded under Space Act

Agreement C99066G); Meng-Sing Liou, NASA Lewis Research Center.

16. Abstract

The numerical performance of a second-order upwind-based TVD scheme and that of a uniform second-order

ENO scheme for shock capturing are compared. The TVD scheme used in this study is a modified version of

Liou, using the flux-difference splitting (FDS) of Roe and his "superbee" function as the limiter. The construction

of the basic ENO scheme is based on Harten, Engquist, Osher, and Chakravarthy, and the 2D extensions are

obtained by using a Strang-type of fractional-step time-splitting method. Numerical results presented include both

steady and unsteady, 1D and 2D calculations. All the chosen test problems have exact solutions so that numerical

performance can be measured by comparing the computed results to them. For I D calculations, the standard

shock-tube problems of Sod and Lax are chosen. A very strong shock-tube problems, with the initial density ratio

of 400 to 1 and pressure ratio of 500 to 1, is also used to study the behavior of the two schemes. For 2D

calculations, the shock wave reflection problems are adopted for testing. The cases presented in this report
include flows with Mach numbers of 2.9, 5.0 and 10.0.

17 Key Words (Suggested by Author(s))

Shock capturing
ENO scheme

TVD scheme

Euler equations

19 Security Classif (of this report)

Unclassilied

18 Distribution Statement

Unclassificd - Unlimited

Subject Category 64

..........

20. Security Classit. (of this page) 21 No of pages

Unclassified 22

22. Price"

A03

NAS,_ FORM 16_'6 OCT B6 "For sale by the Nahonal lechnical Information Service. Spnngfield Vlrgtn_a 22161


